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Abstract. Fixed points of discrete vector models with icosahedral and dodecahedral 
symmetry are found by approximate real space renormalisation techniques. Both models 
have three distinct phases similar to cubic vector models. New fixed points governing the 
order-disorder and partial order-disorder transitions are identified. These transitions 
gradually become softer as the number of vector components increases. 

1. Introduction 

The influence of operators breaking the continuous O( n )  symmetry of two-dimensional 
spin systems to discrete subgroups has been studied intensively in the last decade. The 
pioneering work of JosC et a1 (1977) has demonstrated that breaking operators reducing 
the O(2) planar symmetry to Z( p) are relevant for p < 5 ,  changing qualitatively the 
fixed point structure of the coupling space, and become irrelevant for p 3 5 .  

Cubic anisotropies in general O( n )  symmetric systems were analysed by Nienhuis 
et al (1983). For n > 2 these operators are relevant as reflected by the existence of a 
new cubic fixed point. As a consequence the originally trivial phase structure of the 
Heisenberg-type vector models is transformed into a more complicated multiphase 
behaviour. 

In a previous publication (Margaritis et a1 1986) we have started the study of more 
complicated schemes, where the O(3)  symmetry is broken into the highest polyhedral 
groups, the icosahedron and dodecahedron. The results of numerical Hamiltonian 
spectrum calculations suggest the appearance of particular new fixed points characteris- 
ing the order-disorder transition. The exponents of these points seem to move towards 
the asymptotic free low temperature behaviour of the original Heisenberg model as 
the rank of the residual symmetry group increases. The interest of these investigations 
comes from several sources. Direct Monte Carlo simulations (Berg et a1 1984) and 
Monte Carlo renormalisation group studies (Hasenfratz and Margaritis 1984) provided 
evidence that the asymptotic free scaling laws show up already in the O(3) model for 
moderate coupling (temperature) g - 1, not just in the narrow neighbourhood of the 
critical point g, = 0. If the fixed points introduced by the breaking fields do not influence 
this region one has a chance to approximate the model by one of its polyhedral 
subgroups. A crossover from the ‘early’ asymptotic free p function (for g - 1) could 
occur to the final true linear behaviour close to g - g,<< 1. Our Hamiltonian investiga- 
tion has indicated such an eventuality for the dodecahedron approximation. The 
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advantages of the computer implementation of discrete symmetries when studying field 
theories on the lattice are well known (Lang et a1 1982). 

Many authors have discussed the question of universality of different lattice regulari- 
sations of the non-linear U model (Solomon 1981, Duane and Green 1981, Sinclair 
1982, Fukugita et a1 1982). The main issue in these numerical investigations was the 
nature of phase transition(s) in projective realisation of the O(3)  symmetry (RP(2) 
model). It corresponds to replacing the S .  S’ nearest-neighbour interaction by ( S  S’)’ 
and introducing by this an extra Z(2) local symmetry. 

The range of conclusions is very wide. From the non-existence of any transition 
(Sinclair 1982) to Kosterlitz-Thouless type transitions (Solomon 1981, Fukugita et a1 
1982) one has all kinds of predictions. As was suggested by Fukugita et a1 (1982), a 
renormalisation group analysis (also of the polyhedral models) should settle this 
controversial issue. According to our analysis, in the icosahedral projective model one 
has a single first order transition which becomes partly second and partly first order 
in the case of the dodecahedron, depending on which region of the phase boundary 
the transition takes place in. 

Certainly, we would not exclude the possibility of experimental realisations of the 
higher polyhedral symmetries in materials with highly degenerate ground states. 

The approximate real space renormalisation group analysis to be employed in the 
present paper was originally proposed by Barber (1975). It is a variant in two 
dimensions of the Migdal-Kadanoff approximation (Migdal 1975, Kadanoff 1976). 
Its intuitive use by Aharony (1977) in the case of cubic vector models has led to the 
discovery of cubic fixed points describing a new type of phase transition in discrete 
spin models. The qualitative fixed point structure, but not the location of the critical 
points found by Aharony, proved to be correct, although the variational bond shifting 
method of Kadanoff (1979) as applied to the cubic vector models by Nienhuis et a1 
(1983) provides a quantitatively much more reliable treatment. 

The higher complesity of the icosahedral and dodecahedral models makes the 
implementation of the usual Migdal-Kadanoff approach somewhat more complicated. 
This framework allows a self-consistent treatment with only nearest-neighbour coup- 
lings, making the resulting coupling scheme and also the presentation of the renormali- 
sation flows more transparent. Our intuitive interpretation of some quantitative fixed 
point characteristics follows Aharony’s ideas. Also the agreement of the emerging 
picture with the results of finite Hamiltonian studies of the icosahedral and dodecahe- 
dral models (Margaritis et a1 1986) strengthens our confidence in the qualitative 
correctness of the proposed approximation. 

The organisation of the paper is as follows. In § 2 the icosahedron model is used 
to describe the method for exploring the fixed points of the renormalisation group 
equations. The actual fixed point structure and thermal indices relevant to the icosahe- 
dron model are also given in this section. For the dodecahedron model the same 
analysis is presented in § 3. The conclusions of these studies are summarised in § 4. 
In an appendix the solution of the one-dimensional transfer matrix eigenvalue problem 
is presented, because it is the most important input for the approximate renormalisation 
group equations. 

2. The icosahedron model 

The most general nearest-neighbour Hamiltonian with icosahedral symmetry has the 
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form 

-PH = c F ( S ,  * S,) (2.1) 

where S is the unit vector variable pointing to the vertices of the icosahedron and the 
summation refers to all nearest neighbours in the two-dimensional square lattice. The 
scalar product SI * S, has four different values (table l), so the Hamiltonian will be 
parametrised by four couplings. A convenient choice is to work with the independent 
Boltzmann factors w, = exp( F ( S ,  S ) ) ,  where SI ( i  = 0, 1 ,2 ,3)  is the ith nearest direction 
to S in the icosahedron ( S o =  S ) .  Throughout this paper the normalisation w1 = 
exp(F(S  - S ) )  = 1 will be required and the actual parameter space is three dimensional: 

(Y) 

-PH = { K [ S, * S, - 1 ] + J [  ( S, * S, )2 - 1 ] + D[ ( S, - S,)3 - 1 I}. ( 2 . 2 )  
(1,) 

The expression in curly brackets is one way to parametrise the most general function 
F up to an additive constant (which is the fourth independent parameter). This can 
be understood by explicitly setting up and solving the set of equations for the four 
independent values of F as expressed through the linear combinations of the terms in 
(2.2). Specifically, one finds that the relationship between the couplings K ,  J, D and 
the independent Boltzmann weights, with the help of table 1, is 

w3 = exp[ - K (1 +&) - $J - D( 1 +&)I (2.3) 

w4= exp(-2K - 2 0 ) .  

When ( 2 . 2 )  is considered as a discrete approximation to the 0(3)-symmetric Heisenberg 
model, the phase diagram in the D = 0 plane is of particular interest because the 
‘linear + quadratic’ Hamiltonian was studied intensively from the field theoretical point 
of view. 

Table 1. Cosines of the angles between different directions in polyhedra. 

Polyhedron First Second Third Fourth Fifth 

-I /& -1 - - 
- 8 / 3  -1  1 1 

Icosahedron 1/43 
Dodecahedron A/ 3 5 -5 

Another interesting surface is selected through the relation w2 = w3 which reduces 
the model to the six-component cubic model (Kim et a1 1975, Aharony 1977). Its 
phase structure is well established: four fixed points were found (a  six-state Potts point 
when w2 = w3, w4 = 1, a twelve-state Potts point w2 = w3 = w 4 ,  an Ising fixed point 
w2 = w3 = 0 and the cubic fixed point). The most interesting question for our study is 
whether any new fixed point appears when the relationship w2 = w3 is abandoned. 

The real space renormalisation group method has been applied to d = 2 dimensional 
systems in various forms (Niemeyer and van Leeuwen 1976). In particular the vari- 
ational bond shifting method of Kadanoff (1979) was found to yield surprisingly 
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accurate fixed point characteristics. Our aim is a qualitative understanding of the 
icosahedron system. For this purpose we use the simple dedecoration RG transforma- 
tion, which is a variant of the Migdal-Kadanoff iteration (Barber 1975). It provided 
the qualitatively correct fixed point structure of the cubic model. It can be interpreted 
as a minimal real space renormalisation programme on a 2 x 2 finite lattice with scale 
factor Its steps are presented graphically as 

X--. .--. 
0-X I I + / ’ / ’ +  -./’ / ’  */* 

The first step is the summation over the crossed variables and the transformation is 
completed by squaring the Boltzmann factors arising (broken line). The summation 
is performed in the diagonal representation of the one-dimensional icosahedral transfer 
matrix. The diagonalisation procedure is presented in the appendix. Four recursions 
for the unnormalised Boltzmann factors are arrived at. The normalisation wi = 1 is 
ensured by dividing wYeW ( i  # 1) by w Y W :  

w; = N - ’ [  a, + 3/8( 4 2  - a3) - a4] 

w; = N - ’ [ u ,  - 3 / 8 (  a ,  - a3)  - a,] 
w: = N-’[a ,  - 3 ( a 2 +  a 3 )  + 5a4] 

( 2 . 4 )  

where 

N = a, + 3( a2 + a3)  + 5a4 

a, = [ 1 + 5( w:+ w:, + w:]’ 
a, = [ 1 +Js( w:- w:) - w:12 
a3 = [ 1 - Js( w: - w:) - w:]’ 
a4= [l  - w2- w3+ w4] . 2 2 2 2  

Inspection of equations ( 2 . 4 )  and (2 .5)  reveals the invariance of the recursion equations 
under the interchange w2c) w3. This implies that it is sufficient to find eventual new 
fixed points beyond those of the six-state cubic model (appearing in the symmetry 
plane) in one-half of the three-dimensional region restricted by the positivity of the 
one-dimensional transfer matrix (the so-called ferromagnetic sector). In figure 1 this 
half region is shown with the fixed points and the phase boundaries of the model. 

In the w2 = w3 plane our results are identical to Aharony (1977) for the n = 6 case. 
Two (with their mirror points four) additional fixed points do appear. The coordinates 
of these points, the eigenvalues of the recursions (2 .4)  and ( 2 . 5 )  linearised around 
them and the estimated thermal exponents are listed in table 2.  

The icosahedron model exhibits three phases, similar to the cubic vector models. 
The ferromagnetic phase occurs for small w2, w3 and w4 values and the (zero tem- 
perature) sink attracting this phase is So of figure 1. When w2 and w3 are sufficiently 
large the system is in its paramagnetic phase, attracted by the sink S,.  The third phase 
exists in the large w4, small w2, w3 region, where the system exhibits partial order. All 
spins point along one of the diagonals of the icosahedron (with Z ( 5 )  axial symmetry), 
but do not favour either of the directions. This region is attracted by SI. 

The remaining fixed points lie in the phase boundaries. Those with a single relevant 
direction, orthogonal to the boundaries, govern the physics of the transitions between 
different phases. Three leaves of the boundary contain respectively the Ising fixed 
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Figure 1. Schematic phase diagram of the icosahedron model. Only the w2 3 w j  region is 
shown. All fixed points, except Y, and Y2, are in the w 2 =  wg symmetry plane. 

point (I)  describing the transition between partial order and order, the six-state Potts 
( P6) for the transition between partial order and disorder and finally the icosahedron 
(Yl)  for the transition between order and disorder. Only the last one differs from the 
situation found in the cubic vector models. 

The phase boundaries intersect in a critical line containing the unstable tricritical 
point Y2 (it is attractive only along the intersection line). Two more fixed points 
already known from the cubic vector model are left for discussion. The cubic point 
C6 describes the paramagnetic-ferromagnetic transition if the system is strictly in the 
w2 = w3 plane. When the iteration starts from a close-by point it approaches C, first 
and then crosses over to Y1. PI2 is a twelve-state Potts fixed point which is the branch 
point of the three phase structure in the wz= wg plane and naturally lies in the 
intersection line of the three leaves too. This point is absolutely unstable. 
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Table 2. Fixed points and their characteristics for the icosahedron model (asterisks denote 
transitions of probable first order nature). 

Fixed points 

Coordinates 

Number of 
relevant 
eigenvalues 

(") w4 

Y 

I Ising 0 1 

P6 Potts 0.427 304 1 

0 
0.543 689 

0.427 304 
1 

0.359 529 
0.359 529 

0.363 408 
0.319 122 

0.162 785 
0.055 979 

0.324 943 
0.400 786 

PL2 Potts 0.359 529 3 

C, Cubic 0.363 408 1 

Y, Icosahedron 0.509 348 1 

Y, Icosahedron 0.384 239 2 

0.669 

0.514* 

0.449* 

0.450* 

0.778 

0.455* 

Our crude RG analysis leads to distorted exponents. Following Aharony (1977) we 
offer an intuitive classification for the order of the transition they,describe. As has 
been pointed out by Nienhuis and Nauenberg (1976) in the case where the largest 
eigenvalue of the RG transformation around a fixed point governing a transition is bd, 
where b is the scale factor (=8) and d is the dimensionality of the system, then it 
is a discontinuity fixed point describing a first order transition. For this reason we 
consider all fixed points with critical index v close to or smaller than f to belong to 
this class. This convention, for instance, is consistent with the exact results for the 
Potts model in two dimensions. By this criterion, which might be substantiated by 
other RG techniques, the new fixed point Y ,  corresponds to a first order transition. 
The Ising fixed point, which is known exactly to be second order, seems to be a 
convenient borderline. Then the Y1 fixed point, whose v exponent is larger than what 
is found in our approximation for the Ising point, is classified to be second order too. 
This conclusion confirms our previous finite-size Hamiltonian investigation of the 
J = D = 0 model (Margaritis et a1 1986) giving 

Our main result is that the first order nature of the paramagnetic-ferromagnetic 
transition in the cubic vector models changes into a continuous one when a larger 
subgroup of O(3) is chosen. The phase structure in the D = 0 plane is displayed in 
figure 2. Continuous transitions are denoted by full curves, while first order ones by 
broken curves. Because the latent heat of the P6 transition is known to be very small 
and when approaching the point B it becomes even softer, the discontinuities across 
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1 

Figure 2. Schematic phase diagram for the icosahedron model on  the K - J  canonical 
surface. Continuous transitions are denoted by full curves and the first order transition 
by broken curves. Points on the BP,, BI and B Y  transition lines iterate towards the I, P, 
and Y, fixed points, respectively. Starting from B the fixed point Y, is reached. The phases 
are: 1, disorder; 2, order; 3, partial order. 

the P6-B curve are expected to be weak. With conventional Monte Carlo simulation 
it might be hard to distinguish it from a continuous critical line (Hamer 1983). 

Along the quadratic J axis a single first order transition is signalled. This point 
will be discussed further in § 4. 

3. The dodecahedron model 

With normalisation w1 = 1 the most general nearest-neighbour Hamiltonian with 
dodecahedron symmetry is specified by five parameters 
- P H  = { K [Si * S, - 11 + J [  ( Si S, )* - 11 + D[ (Si * S,)3 - 11 

( Y) 

+ E[(S i  * S,)4- 1]+ F[(S i  * Sj)5 - l]}. (3.1) 
Here again the recursion equations are written in terms of the independent Boltzmann 
factors wi ( i  = 2,3,4,5,6).  With the help of the appendix, the recursion relations are 
as follows: 

wi = N - ' (  a, +$a2 -!a3 + fia4-fia6) 

w;= N - 1 ( a l - $ a 2 + $ 2 3 +  a,-2a,+a,) 
wk= N - ' (  a, -$a2+fa3 - a,+ 2a5- a6) (3.2) 
w i  = N - ' (  a1 + $a2 -fa3 - d a d +  fia6) 
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w;  = N-’ (a ,  + 5a2+ 4a3 - 3a4-4a5 - 3a6) 
with 

N = a , + 5 a 2 + 4 a 3 + 3 a 4 + 4 a S + 3 a 6  
a ,  = [ 1 + w:+3( w:+ w: )  + 6 (  w:+ w:)]’ 

a2 = [ I  + w:+ w:+ w: - 2( w:+ w:)12 
a3 = [ I  + w i - 2 (  w:+ w: )  + w:+ w:]’ 

a4 = [ 1 - w i + J 5 (  w: - w:)  + 2( w: - wi)12 
a5 = [ I  - w $ - 3 ( w : -  w:)]’ 

a6 = [l  - w : - A (  w: -  w : )  -2 (  w: - w:>y.  

(3 .3)  

A summary of the fixed points found in the five-dimensional unit cube can be seen in 
table 3. The dodecahedron model has the same phase structure as the cubic model. 
The phase boundaries are four-dimensional surfaces in the five-dimensional parameter 
space. The coordinates of the three sinks are: S,  ( wi = I ) ,  So ( wi = 0) and SI ( w2 = . . . = 
w s  = 0, w6 = 1). The recursions (3.2) and (3.3) are symmetric under the synchronous 
interchanges w 2 c ,  w s ,  w3* w4. In the invariant subspace w3 = w4, w2 = w5 one might 
impose more restrictive relations in order to identify special subcases. 

Table 3. Fixed points and their characteristics in the dodecahedron model (asterisks denote 
transitions of probable first order nature). 

Number of 
relevant 

Fixed points eigenvalues U 

I Ising 
P,, Potts 
P,, Potts 
Clo Cubic 
Jl 

J2 

Dl 
D2 
D3 
D4 

1 
2 
1 
2 
1 
1 
1 
2 
3 
2 

0.669 
0.464* 
0.412* 
0.413* 
0.651 
0.499* 
1.480 
0.619 
0.414* 
0.413* 

If w2 = w3 = w4 = ws the ten-component cubic vector model arises with its familiar 
four fixed points (Pl0, P20, I and Clo). Relative to the icosahedron case only the role 
played by C l 0  and Pz0 (compared with c6 and PI2) are interchanged. This result was 
already known by Aharony (1977). 

In the w6 = 1, w2 = w s ,  w4 = w3 subspace a model even under local S- ,  -S Z ( 2 )  
transformations appears ( K  = D = F = 0). In the corresponding two-dimensional sub- 
space two more fixed points were found beyond Plo mentioned above. J1 is located 
in the w3 < w2 region, while for J2 one has w2< w 3 .  Both have only one relevant 
direction and the thermal eigenvalues correspond to first order transitions in the region 
attracted by J2 and second order ones for that attracted by J 1 .  

The Hamiltonian quadratic in Si (K  = D = E = F = 0, J # 0) is a parabolic curve 
in the w 2 ,  w3 plane ( w3 = w:) .  Therefore it cannot be identified with the ten-state Potts 
model as it was in the case for the icosahedral symmetry. The critical point of the 
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3 

i’ 
2 

5, Kc K 

Figure 3. Schematic phase diagram for the dodecahedron model on the K - J  canonical 
surface. All transitions are expected to be continuous. The notations of the phases are 
the same as in figure 2. 

model is now attracted by J 1  and in consequence the disorder-partial disorder transition 
of the ‘quadratic’ model softens to a continuous one. 

We have found four more fixed points if the symmetry relations w2 = w5, wj = w4 
are relaxed ( Di, i = 1,. . . ,4;  see table 3 ) .  Almost certainly Di ( i  # 1) belong to the 
intersection region of the three leaves of the phase boundaries. The fixed point D1 
has a single relevant direction driving the order-disorder transition. The corresponding 
v exponent is quite large, consistent with the v hierarchy found by Margaritis et a1 
(1986): 

The projection of the phase structure into the J - K  plane is shown in figure 3. All 
transitions are now thought to become continuous. The three branches of the critical 
lines are attracted by I (Ising), J 1  (‘quadratic’) and D1 (‘linear’) fixed points, respectively. 
The branching point iterates towards D,. 

vdodeca ’ Ycosa. (3.4) 

4. Conclusions 

The main results of the present investigation are summarised below. They represent 
the most plausible interpretation of a numerical procedure of modest accuracy. Its 
application, however, to particular models (Potts or cubic vector, for instance) leads 
to qualitative conclusions compatible with those of more refined methods. Our 
confidence in the main features of the suggested phase structures are further consoli- 
dated by the agreement with our previous Hamiltonian studies realised for the specific 
cases K # 0, J = D = 0 and K # 0, J = D = E = F = 0, respectively. 
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(i)  The new fixed points describing the physics of the order-disorder transition 
are characterised by increasing the v exponent as the number of the allowed spin 
directions on the unit sphere increases. 

(ii) The critical coupling K ,  of the models with nearest-neighbour interactions 
linear in S S' is shifted towards larger values, as one expects, with the approximation 
to O(3) becoming more faithful. 

(iii) The existence of a partially ordered phase is confirmed in both models. This 
question was discussed for models with full O(3) symmetry by a number of authors. 
Solomon (1981) and Fukugita et a1 (1982) have found indications from strong coupling 
series and direct Monte Carlo investigations for a Kosterlitz-Thouless type transition 
in various models, whose interaction density was even under S + - S  local transforma- 
tions. Duane and Green (1981) have excluded first order transitions, while Sinclair 
(1982) has objected to the existence of any transition in the quadratic model. 

In the icosahedron model the local Z(2)  invariant action is strictly quadratic in 
S .  S'.  It is equivalent to a six-state Potts model. Our analysis has reproduced the 
result of Aharony and is consistent with a unique first order transition. However with 
conventional numerical simulation techniques on a finite lattice it might be difficult to 
find evidence for it because the correlation length of the six-state Potts model at the 
transition point is of the order of 100 lattice spacings, as one can learn from the exact 
Hamiltonian solution of Hamer (1983), for instance. 

In the dodecahedron model the three-phase structure is still present. However the 
partial order-disorder transition is driven now by two new fixed points J1, J 2 .  The 
pure quadratic model belongs to the class of second order transitions. Thus, assuming 
a monotonic extension of the softening tendency towards denser spin sets on the unit 
sphere, we also exclude the existence of a first order transition in the RP(2) model. 

(iv) An optimised variational bond shifting transformation could be used to find 
very accurate thermal exponents. As the transition we are interested in is second order, 
there is no need to introduce vacancies into the model (Nienhuis et a1 1983). With a 
denser approximation to O(3) one might study the crossover from the predominantly 
quadratic (c , (g  - g,)') regime to the linear region (1/ v) (g - g,) of the p function and 
then this investigation will yield useful information for the continuum limit of the 
non-linear U model. 

Acknowledgments 

Helpful suggestions of P6l Rujdn and an interesting discussion with Professor M Schick 
are acknowledged with pleasure. Thanks are due to Ferenc Igl6i for his help in 
computer implementation of the Migdal-Kadanoff type fixed point search. 

Appendix. Solution of one-dimensional chains with polyhedral symmetry 

The Migdal-Kadanoff approximate real space renormalisation formula rests upon the 
exact solution of the one-dimensional spin system with the given symmetry. Moreover, 
the complete solution of the transfer equation 
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is an amusing problem in itself ( F ( S .  S ' )  is as in (2.1)). The method of solution of 
(Al)  which will be presented in this appendix is generally applicable to any one- 
dimensional system with discrete symmetry. 

Eigenfunctions of (Al )  are fully specified by the polyhedral symmetry and do not 
depend on the couplings. The eigenvalues will be expressed in terms of the independent 
Boltzmann factors. 

Consider the Hamiltonian of the icosahedron model for concreteness. The argument 
of Fradkin and Susskind (1978) is applicable to the limiting case K +a, J = D = 0: 
the transfer operator goes over into 1 - a(  K)S* where a(  K )  is a unique function of K 
(tending to zero when K + 03) and S* is the shift operator which connects a direction 
n in the icosahedron to its nearest neighbours. 

By the above remark the eigenvectors of S coincide with those of the transfer 
operator for any values ofthe coupling. Their knowledge readily yields the eigenvalues. 

The eigenvectors of S are classified with respect to their transformation properties 
under Z(5) rotations around one of the diagonals of the ic:sahedron, say the '1-12' 
axis (figure 4). The singlet sector is spanned by applying S to appropriately chosen 
starting vectors 

*b'"= l / f i ( (1)*(2))  

with definite parity under 'up-down' reflections. The Linczos tridiagonalisation pro- 
cedure (see, e.g., Wilkinson 1964) started from .Yrr) closes in both channels with a 
2 x 2  matrix: 

(A31 

The corresponding eigenvectors and eigenvalues are given in table 4. 

tridiagonalisation with are 
In the channels transforming non-trivially under Z( 5 ) ,  the vectors to start the 

1 vb"=z ((2)+2(3)+Z2(4)+Z3(5)1Z4/6)) 

vi2) =JS (~2)+z2)3)+Z4(4)+Z~5)+Z3)6))  

Z = e x p ( i 2 ~ / 5 )  

1 

1 

12 

Figure 4. The canonical labelling of vertices of the icosahedron. The state when the spin 
points towards the ith vertex is denoted by li). 
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Table 4. Eigenvectors and Hamiltonian eigenvalues for the icosahedron model in the 
Z(5)-invariant channel around the ‘1-12’ diagonal (see figure 4). 

a P Eigenvalue of 2 Eigenvectors 

1 + 5 l / d E ( I l ) + .  . .+j12)) 
2 - J3 1/2(11)-112)+1/J3(l2)+. . . + I l l ) ) )  
3 - -8 1/2(\1)- 112) - 1/J3()2)+ .  . .+ 111))) 
4 + - 1  l /&j(-5(I l )+ 112))+ ( / 2 ) + .  . .+ 111)) )  

and their complex conjugates. All four lead again to 2 x 2 matrices completing the 
specification of the eigenvectors in the full twelve-dimensional vector space. The new 
matrices are 

z2 1 + z 2 )  + z3 
z+z* l + Z )  (;T;3 

( l + Z *  z+z* 
and their respective Hermitian conjugates. The eigenvalues of the first are and - 1 ,  
those of the last -A and - 1 .  The eigenvectors in the Z(5) covariant channels are 
not necessary for the recursion relations explicitly. Therefore we simply conclude by 
stating that a singlet ( E  = 5 ) ,  two three-dimensional ( E  = *A) and a five-dimensional 
representation ( E  = - 1) of the icosahedral group were found. 

The Boltzmann factors can be expressed through the spectral decomposition of the 
transfer operator as 

w =(SleFIS’)=z  h,(S~a)(aIS’).  
01 

For the independent quantities we have 

w1 = c ACI(1 I a)(. 11) 

w3=CACI(71a)(a l l )  

w2 = c L ( 2 I  .)(a 11) 

w4 = c k d 2 1  a)(. 11). 

CI OL 

CI a 

Only those / a )  contribute which have non-zero projection on 11). This is the reason 
that only the first four eigenvectors listed in table 4 do appear in (A6). The matrix 
relating w = (w, , w2, w 3 ,  w4) and the eigenvalues of the transfer matrix A = 
( A l ,  A 2 ,  h 3 ,  h4) is given as 

r l  3 3 5 1  
1 1 3/A -3/& -1  

w = M A  M=z[l - 3 / 8  3 1 8  - 1 1 ’  
1 -3 -3 5 

The eigenvalues finally come by inverting (A7) 

5 5  

-1 -1 
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M=' 20 

- - 
1 5 4 3 4 3  
1 ;  - f J s o - d 3  
1 - g ;  1 - 2 1  
1 -2 3 -1  2 -1  
1 ;  - g - J s o  v 5  

- 1 5 4 -3 -4 -3 -. 
- - 

1 3 6 6 3 1  
1 1  - 2 - 2  1 1  
1 - 2  1 1  -2 1 

1 0 - 3 3  0 - 1  

M - ' =  
1 d3 2 -2 -d3 -1  

1 J s  2 - 2 J s - 1  - 1 J s  2 - 2 J s - 1  O -'I L 1 0 - 3 3  

1 1  - 2 - 2  1 1  ' 1  1 3 6 6 3  

1 d3 2 -2 -d3 -1  
1 -2 1 1 -2 M - ' =  

In the derivation of the recursion equations (2.4) and (2.5) and (3.2) and (3.3), equations 
(A7)-(A9) are used, respectively. 

References 

Aharony A 1977 1. Phys. A :  Math. Gen. 10 389 
Barber M 1975 J. Phys. C: Solid State Phys. 8 L203 
Berg B, Meyer S and Montvay I 1984 Nucl. Phys. B 235 [FSl l ]  149 
Duane S and Green M B 1981 Phys. Lett. 103B 355 
Fradkin E and Susskind L 1978 Phys. Reo. D 17 4462 
Fukugita M, Kobayashi M, Okawa M, Oyanagi Y and Ukawa A 1982 Phys. Lett. 109B 209 
Hamer C J 1983 J. Phys. A: Math. Gen. 16 3085 
Hasenfratz A and Margaritis A 1984 Phys. Lett. 148B 129 
JosC J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977 Phys. Reo. B 16 1217 
Kadanoff L P 1976 Ann. Phys., N Y  100 359 
- 1979 Phys. Reo. Lett. 39 903 
Kim D, Ldvy P M and Uffer 1975 Phys. Reo. B 12 989 
Lang C B, Bhanot G and Rebbi C 1982 Comp. Phys. Commun. 25 275 
Margaritis A, Patkds A and Rujan P 1986 Nucl. Phys. B 270 [FS16] 61 
Migdal A A 1975 Zh. Eksp. Teor. Fiz. 69 1457 
Niemeijer T H and van Leeuwen J M J 1976 Phase Transitions and Critical Phenomena vol 6, ed C Domb 

Nienhuis B and Nauenberg M 1975 Phys. Reo. Left. 35 477 
Nienhuis B, Riedel E K and Schick M 1983 Phys. Reo. B 27 5627 
Sinclair D K 1982 Nucl. Phys. B 205 [FS5] 173 
Solomon S 1981 Phys. Lert. lOOB 492 
Wilkinson J M 1964 The Algebraic Eigenvalue Problem (Oxford: Clarendon) 

and M S Green (New York: Academic) p 425 


